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Abstract

This study compares the estimation of share equations derived from the Translog cost function under
maximum likelihood and minimum information. The sample RMSEs are consistently lower under maximum

likelihood.
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1. Introduction

Dual objective functions and flexible functional forms, when used in conjunction with well known enve-
lope theorems (e.g. Shephard’s and Hotelling’s lemmas) provide a theoretically rigorous means of specifying
systems of demand (and supply) functions with a minimum of a priori restrictions on the assumed technology
sets or preference orderings. While the advantages of this “approach” are many, there are limitations as
well. One significant estimation problem relates to parsimony; unrestricted flexible functions characterizing
N factors (inputs or consumption goods) require (N+1)(N+2)/2 parameters. Additionally, asymptotically
efficient estimators such as maximum likelihood (ML) or iterated SUR require estimation of an additional
N(N+1)/2 covariance elements. For example, if four inputs (goods) are included (e.g. capital, labor, energy
and intermediate goods as in Diewert and Wales, 1995) 15 parameters and 10 covariance terms must be
estimated. Accordingly, for many post-war aggregate time series data sets, estimation of an unrestricted
flexible function and the associated covariances calls into question the validity of the asymptotic properties
associated with maximum likelihood.

An alternative to using ML estimation is the informational estimator proposed by Finke, Flood and Theil
(1984); Finke and Theil (1984); and Theil and Fiebig (1984). Informational estimation involves minimizing
the Strobel (1992) deviation between actual budget shares and the predictions obtained from the estimated
share equations. Since estimates of the covariance matrix are not required, informational estimators provide
an attractive alternative to ML in small sample situations. Theil and Chen (1995) demonstrated that the
informational estimator performed as well as ML with known covariance matrix and better than ML with
an unknown covariance matrix in terms of root mean square errors (RMSE).!

Perhaps the most prevalent functional form used in empirical analysis is the Translog cost (expenditure
function). Since estimation of the share equations obtained from the Translog often occurs in small samples
and additionally requires the estimated covariance matrix, it seems likely that the efficiency gains demon-
strated by Theil and Chen may also be realized for share equations obtained from the Translog. The purpose
of this paper is to investigate any efficiency gains obtained from informational estimators of Translog share
equations when compared to ML estimator. Additionally, the methodology employed by Theil and Chen is
extended by using bootstrapping techniques rather than simulating model coefficients according to a given
distribution.

2. Model Specification and Informational Estimation

The general form of the translog cost function for n-variable inputs and m-outputs can be represented

T Made available as Applied Economics Working Paper AEWP 95-3, Food and Resource Economics
Department, University of Florida, August 1995.

L For a 10 good system with 15 countries, ML with unknown covariance failed to converge while again
the estimates of the informational estimator were compared with ML with known covariances.
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where In(C') is the (natural) logarithm of total cost, In(p;) is the logarithm of the input price for input
i, In(g;) is the logarithm of the output quantity i, and «;, 3;, A;;, B;; and T';; are estimated parameters.
Taking the logarithmic derivatives of equation (1) with respect to input prices and invoking Shephard’s
lemma yields a system of input share equations:
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where w; denotes the cost share of the 1th factor of production.
Informational estimation minimizes the information of the posterior sample:
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where wy; is the observed budget share of input i for the tth observation, @ (f) is the estimated budget share
for the ith input for the tth observation, and @ denotes the parameters associated with equation (2). Note,
that if the estimated cost shares exactly equals the observed cost shares, the informational value is zero. To
operationalize the estimation process, the theoretical requirement that the cost shares sum to one must be
imposed and the expression
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must be solved with the further restriction that 0 < @y;(6) < 1 for all t,j. Equation (3) is estimated with
Minos 5.1 (Murtauh and Saunders) subject to
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for all t,j where In(p;;) and In(q.;) denote the observed log of input prices and output quantities, respectively.?
3. Sample Based Standard Errors

To examine the properties of informational estimation, the share equations for commerical banks in
the state of Florida were estimated. Inputs included debt capital, wages and fixed premises. Qutputs
included real estate loans, agricultural loans; other loans, securities and transaction deposits. The sample
was limited to the 277 banks without foriegn deposits during 1989. The maximum likelihood (ML) and
minimum informational (MI) estimates are presented in Table 1. The results of ML typically agree in sign
and magnitude with those of MI with the exception of as which changes in sign.

2 The general shape of the information function in equation (3) suggests that this condition will hold at
optimum. However, if the function is numerically optimized, a particular iteration may fail to meet this
condition yielding a failure in the search for the maximum. Accordingly the solution is checked at optimum
to guarantee that none of these constraints are binding. If a constraint is binding é is set to a smaller value
and the problem resolved.



In theory, the covariance matrix for the maximum likelihood estimates can be estimated using the
Hessian of the likelihood function at optimum. However, Laitinen (1979) and Meisner (1982) call into
question the use of tests based on this matrix. Laitinen shows that the standard test for homogeniety rejects
the null hypothesis too frequently. Meisner obtains a similar conclusion for tests of symmetry. Thus, the
standard errors for both ML, and MI are obtained using bootstrapping.

The results in Table 1 indicate that ML always yields a smaller root mean squared error (RMSE) than
MI in full sample.® Thus, we conclude that maximum likelihood is preferred in large samples. Next to test
the effect of sample size on the RMSE, we reduce the sample size to 200, 100, 50, and 25 observations. These
results; also presented in Table 1, indicate that ML yields a consistently smaller RMSE at each sample level.
This result would appear inconsistent with the results of Theil and Chen.

Dividing the RMSE for each sample size by the RMSEs for the full sample indicates that the relative
increase in RMSE is smaller for MI than ML. This result would appear consistent with the results of Theil
and Chen, but an extremely small sample may be required for MI to yield smaller RMSEs than ML.

4. Conclusions

This study examines the use of minimum information estimation in the analysis of Translog cost func-
tions. The empirical analysis indicates that the root mean square errors of the maximum likelihood estimator
are always smaller than the root mean square errors of the minimum information estimator. These results
appear to contradict the results of Theil and Chen who find that the minimum information approach domi-
nates maximum likelihood yielding smaller root mean square errors in small samples. The differences in the
results may be explained partially by experimental design. Theil and Chen start by assuming a true model
and simulate samples assuming multivariate normality while this study uses the bootstrapping procedure
without a prior: restrictions on the error structure. One artifact of the bootstrapping procedure is that the
bootstrapped means from the minimum information approach differs from the original sample mean. The
driving force behind this divergence is the lack of a zero-residual condition in the minimum information
estimator, unlike the maximum likelithood estimator. Thus, the sum of errors under minimum information
for the full sample is .297 for the first equation and -.428 for the second equation. These results are compared
with zero for both equations under maximum likelihood. In addition to calling into question the relative
power of minimum information, the difference between the bootstrapped means and the original estimates
may also raise questions about the consistency of the minimum information approach.
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Full Sample
Mazimum Likelihood
Original Estimate 0.706 0.063 0.136 -0.099 0.087 0.049 -0.001 0.000 0.025 -0.008 -0.037 0.001 0.000 -0.010 -0.009
Bootstrapped Mean 0.707 0.063 0.136 -0.099 0.087 0.049 -0.001 0.000 0.025 -0.008 -0.037 0.001 0.000 -0.010 -0.009
RMSE 0.103 0.093 0.014 0.012 0.011 0.007 0.003 0.000 0.006 0.008 0.005 0.003 0.000 0.004 0.006
Minimum Information
Original Estimate 0.875 -0.140 0.151 -0.122 0.115 0.050 -0.001 0.000 0.024 -0.013 -0.036 0.000 0.000 -0.010 0.013
Bootstrapped Mean 1.142 -0.152 0.144 -0.144 0.144 0.049 0.001 0.000 0.016 -0.018 -0.049 -0.001 0.000 -0.016 0.018
RMSE 0.290 0.113 0.016 0.026 0.032 0.006 0.003 0.000 0.010 0.009 0.014 0.003 0.000 0.008 0.009
First 200 Observations
Mazimum Likelihood
Original Estimate 0.606 0.162 0.130 -0.092 0.079 0.048 0.001 0.000 0.039 -0.016 -0.039 0.000 0.000 -0.017 0.012
Bootstrapped Mean 0.607 0.161 0.130 -0.092 0.079 0.048 0.001 0.000 0.039 -0.016 -0.039 0.000 0.000 -0.016 0.012
RMSE 0.126 0.115 0.017 0.015 0.014 0.008 0.004 0.000 0.007 0.009 0.007 0.003 0.000 0.006 0.007
Minimum Information
Original Estimate 0.764 -0.036 0.142 -0.114 0.107 0.048 0.002 0.000 0.038 -0.021 -0.039 0.000 0.000 -0.016 0.016
Bootstrapped Mean 1.005 -0.015 0.132 -0.132 0.132 0.048 0.002 0.000 0.026 -0.022 -0.048 -0.002 0.000 -0.026 0.022
RMSE 0.276 0.138 0.020 0.024 0.030 0.008 0.004 0.000 0.014 0.009 0.012 0.004 0.000 0.012 0.011
First 100 Observations
Mazimum Likelihood
Original Estimate 0.624 0.073 0.098 -0.087 0.088 0.052 0.004 0.000 0.064 -0.059 -0.041 -0.002 0.000 -0.036 0.041
Bootstrapped Mean 0.627 0.073 0.097 -0.086 0.088 0.051 0.004 0.000 0.064 -0.059 -0.041 -0.002 0.000 -0.035 0.041
RMSE 0.173 0.149 0.023 0.019 0.018 0.012 0.005 0.000 0.010 0.012 0.009 0.004 0.000 0.008 0.009
Minimum Information
Original Estimate 0.783 -0.105 0.111 -0.108 0.112 0.050 0.004 0.000 0.062 -0.060 -0.040 -0.002 0.000 -0.034 0.044
Bootstrapped Mean 1.045 -0.055 0.123 -0.123 0.123 0.048 0.003 0.000 0.044 -0.051 -0.048 -0.003 0.000 -0.044 0.051
RMSE 0.321 0.193 0.026 0.027 0.025 0.011 0.005 0.000 0.021 0.014 0.014 0.004 0.000 0.013 0.013
First 50 Observations
Mazimum Likelihood
Original Estimate 0.557 0.122 0.074 -0.070 0.075 0.038 0.010 0.000 0.064 -0.053 -0.028 -0.008 0.000 -0.036 0.036
Bootstrapped Mean 0.557 0.123 0.074 -0.070 0.075 0.038 0.010 0.000 0.064 -0.053 -0.027 -0.008 0.000 -0.036 0.036
RMSE 0.225 0.203 0.030 0.026 0.025 0.018 0.007 0.000 0.014 0.015 0.014 0.005 0.000 0.011 0.012
Minimum Information
Original Estimate 0.639 0.112 0.080 -0.082 0.089 0.038 0.010 0.000 0.065 -0.057 -0.027 -0.008 0.000 -0.037 0.040
Bootstrapped Mean 0.900 0.090 0.095 -0.095 0.095 0.034 0.010 0.000 0.049 -0.049 -0.034 -0.010 0.000 -0.049 0.049
RMSE 0.350 0.245 0.032 0.032 0.029 0.017 0.006 0.000 0.020 0.015 0.018 0.006 0.000 0.018 0.016
First 25 Observations
Mazimum Likelihood
Original Estimate 0.078 0.407 0.042 -0.053 0.066 0.087 0.009 0.000 0.091 -0.095 -0.073 -0.005 0.000 -0.050 0.073
Bootstrapped Mean 0.083 0.404 0.043 -0.053 0.066 0.087 0.009 0.000 0.091 -0.095 -0.073 -0.005 0.000 -0.050 0.073
RMSE 0.256 0.249 0.031 0.029 0.030 0.026 0.008 0.001 0.019 0.021 0.020 0.006 0.001 0.015 0.017
Minimum Information
Original Estimate 0.212 0.284 0.052 -0.067 0.078 0.083 0.008 0.000 0.086 -0.091 -0.073 -0.004 0.000 -0.045 0.073
Bootstrapped Mean 0.518 -0.472 0.074 -0.074 0.074 0.087 0.004 0.000 0.058 -0.082 -0.087 -0.004 0.000 -0.058 0.082
RMSE 0.411 0.332 0.039 0.033 0.033 0.023 0.008 0.001 0.033 0.021 0.027 0.007 0.001 0.021 0.021




