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Abstract

This study compares the estimation of share equations derived from the Translog cost function under

maximum likelihood and minimum information. The sample RMSEs are consistently lower under maximum

likelihood.
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1. Introduction

Dual objective functions and exible functional forms, when used in conjunction with well known enve-

lope theorems (e.g. Shephard's and Hotelling's lemmas) provide a theoretically rigorous means of specifying

systems of demand (and supply) functions with a minimumof a priori restrictions on the assumed technology

sets or preference orderings. While the advantages of this \approach" are many, there are limitations as

well. One signi�cant estimation problem relates to parsimony; unrestricted exible functions characterizing

N factors (inputs or consumption goods) require (N+1)(N+2)/2 parameters. Additionally, asymptotically

e�cient estimators such as maximum likelihood (ML) or iterated SUR require estimation of an additional

N(N+1)/2 covariance elements. For example, if four inputs (goods) are included (e.g. capital, labor, energy

and intermediate goods as in Diewert and Wales, 1995) 15 parameters and 10 covariance terms must be

estimated. Accordingly, for many post-war aggregate time series data sets, estimation of an unrestricted

exible function and the associated covariances calls into question the validity of the asymptotic properties

associated with maximum likelihood.

An alternative to using ML estimation is the informational estimator proposed by Finke, Flood and Theil

(1984); Finke and Theil (1984); and Theil and Fiebig (1984). Informational estimation involves minimizing

the Strobel (1992) deviation between actual budget shares and the predictions obtained from the estimated

share equations. Since estimates of the covariance matrix are not required, informational estimators provide

an attractive alternative to ML in small sample situations. Theil and Chen (1995) demonstrated that the

informational estimator performed as well as ML with known covariance matrix and better than ML with

an unknown covariance matrix in terms of root mean square errors (RMSE).1

Perhaps the most prevalent functional form used in empirical analysis is the Translog cost (expenditure

function). Since estimation of the share equations obtained from the Translog often occurs in small samples

and additionally requires the estimated covariance matrix, it seems likely that the e�ciency gains demon-

strated by Theil and Chen may also be realized for share equations obtained from the Translog. The purpose

of this paper is to investigate any e�ciency gains obtained from informational estimators of Translog share

equations when compared to ML estimator. Additionally, the methodology employed by Theil and Chen is

extended by using bootstrapping techniques rather than simulating model coe�cients according to a given

distribution.

2. Model Speci�cation and Informational Estimation

The general form of the translog cost function for n-variable inputs and m-outputs can be represented

y Made available as Applied Economics Working Paper AEWP 95-3, Food and Resource Economics

Department, University of Florida, August 1995.
1 For a 10 good system with 15 countries, ML with unknown covariance failed to converge while again

the estimates of the informational estimator were compared with ML with known covariances.
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where ln(C) is the (natural) logarithm of total cost, ln(pi) is the logarithm of the input price for input

i, ln(qi) is the logarithm of the output quantity i, and �i, �i, Aij, Bij and �ij are estimated parameters.

Taking the logarithmic derivatives of equation (1) with respect to input prices and invoking Shephard's

lemma yields a system of input share equations:
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where wi denotes the cost share of the ith factor of production.

Informational estimation minimizes the information of the posterior sample:

min
�;A;�

TX
t=1

"
nX
i=1

wtjln

�
wti

~wti(�)

�#
(3)

where wti is the observed budget share of input i for the tth observation, ~wti(�) is the estimated budget share

for the ith input for the tth observation, and � denotes the parameters associated with equation (2). Note,

that if the estimated cost shares exactly equals the observed cost shares, the informational value is zero. To

operationalize the estimation process, the theoretical requirement that the cost shares sum to one must be

imposed and the expression
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must be solved with the further restriction that 0 < ~wti(�) < 1 for all t,j. Equation (3) is estimated with

Minos 5.1 (Murtauh and Saunders) subject to

� � ~wti(�) = �i +

nX
j=1

Aijln(ptj) +

mX
j=1

�ijln(qtj) � 1� �

for all t,j where ln(ptj) and ln(qtj) denote the observed log of input prices and output quantities, respectively.
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3. Sample Based Standard Errors

To examine the properties of informational estimation, the share equations for commerical banks in

the state of Florida were estimated. Inputs included debt capital, wages and �xed premises. Outputs

included real estate loans, agricultural loans, other loans, securities and transaction deposits. The sample

was limited to the 277 banks without foriegn deposits during 1989. The maximum likelihood (ML) and

minimum informational (MI) estimates are presented in Table 1. The results of ML typically agree in sign

and magnitude with those of MI with the exception of �2 which changes in sign.

2 The general shape of the information function in equation (3) suggests that this condition will hold at

optimum. However, if the function is numerically optimized, a particular iteration may fail to meet this

condition yielding a failure in the search for the maximum. Accordingly the solution is checked at optimum

to guarantee that none of these constraints are binding. If a constraint is binding � is set to a smaller value

and the problem resolved.
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In theory, the covariance matrix for the maximum likelihood estimates can be estimated using the

Hessian of the likelihood function at optimum. However, Laitinen (1979) and Meisner (1982) call into

question the use of tests based on this matrix. Laitinen shows that the standard test for homogeniety rejects

the null hypothesis too frequently. Meisner obtains a similar conclusion for tests of symmetry. Thus, the

standard errors for both ML and MI are obtained using bootstrapping.

The results in Table 1 indicate that ML always yields a smaller root mean squared error (RMSE) than

MI in full sample.3 Thus, we conclude that maximum likelihood is preferred in large samples. Next to test

the e�ect of sample size on the RMSE, we reduce the sample size to 200, 100, 50, and 25 observations. These

results, also presented in Table 1, indicate that ML yields a consistently smaller RMSE at each sample level.

This result would appear inconsistent with the results of Theil and Chen.

Dividing the RMSE for each sample size by the RMSEs for the full sample indicates that the relative

increase in RMSE is smaller for MI than ML. This result would appear consistent with the results of Theil

and Chen, but an extremely small sample may be required for MI to yield smaller RMSEs than ML.

4. Conclusions

This study examines the use of minimum information estimation in the analysis of Translog cost func-

tions. The empirical analysis indicates that the root mean square errors of the maximumlikelihood estimator

are always smaller than the root mean square errors of the minimum information estimator. These results

appear to contradict the results of Theil and Chen who �nd that the minimum information approach domi-

nates maximum likelihood yielding smaller root mean square errors in small samples. The di�erences in the

results may be explained partially by experimental design. Theil and Chen start by assuming a true model

and simulate samples assuming multivariate normality while this study uses the bootstrapping procedure

without a priori restrictions on the error structure. One artifact of the bootstrapping procedure is that the

bootstrapped means from the minimum information approach di�ers from the original sample mean. The

driving force behind this divergence is the lack of a zero{residual condition in the minimum information

estimator, unlike the maximum likelihood estimator. Thus, the sum of errors under minimum information

for the full sample is .297 for the �rst equation and -.428 for the second equation. These results are compared

with zero for both equations under maximum likelihood. In addition to calling into question the relative

power of minimum information, the di�erence between the bootstrapped means and the original estimates

may also raise questions about the consistency of the minimum information approach.
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�1 �2 A11 A12 A22 �11 �21 �31 �41 �51 �12 �22 �32 �42 �52

Full Sample

Maximum Likelihood

Original Estimate 0.706 0.063 0.136 -0.099 0.087 0.049 -0.001 0.000 0.025 -0.008 -0.037 0.001 0.000 -0.010 -0.009

Bootstrapped Mean 0.707 0.063 0.136 -0.099 0.087 0.049 -0.001 0.000 0.025 -0.008 -0.037 0.001 0.000 -0.010 -0.009

RMSE 0.103 0.093 0.014 0.012 0.011 0.007 0.003 0.000 0.006 0.008 0.005 0.003 0.000 0.004 0.006

Minimum Information

Original Estimate 0.875 -0.140 0.151 -0.122 0.115 0.050 -0.001 0.000 0.024 -0.013 -0.036 0.000 0.000 -0.010 0.013

Bootstrapped Mean 1.142 -0.152 0.144 -0.144 0.144 0.049 0.001 0.000 0.016 -0.018 -0.049 -0.001 0.000 -0.016 0.018

RMSE 0.290 0.113 0.016 0.026 0.032 0.006 0.003 0.000 0.010 0.009 0.014 0.003 0.000 0.008 0.009

First 200 Observations

Maximum Likelihood

Original Estimate 0.606 0.162 0.130 -0.092 0.079 0.048 0.001 0.000 0.039 -0.016 -0.039 0.000 0.000 -0.017 0.012

Bootstrapped Mean 0.607 0.161 0.130 -0.092 0.079 0.048 0.001 0.000 0.039 -0.016 -0.039 0.000 0.000 -0.016 0.012

RMSE 0.126 0.115 0.017 0.015 0.014 0.008 0.004 0.000 0.007 0.009 0.007 0.003 0.000 0.006 0.007

Minimum Information

Original Estimate 0.764 -0.036 0.142 -0.114 0.107 0.048 0.002 0.000 0.038 -0.021 -0.039 0.000 0.000 -0.016 0.016

Bootstrapped Mean 1.005 -0.015 0.132 -0.132 0.132 0.048 0.002 0.000 0.026 -0.022 -0.048 -0.002 0.000 -0.026 0.022

RMSE 0.276 0.138 0.020 0.024 0.030 0.008 0.004 0.000 0.014 0.009 0.012 0.004 0.000 0.012 0.011

First 100 Observations

Maximum Likelihood

Original Estimate 0.624 0.073 0.098 -0.087 0.088 0.052 0.004 0.000 0.064 -0.059 -0.041 -0.002 0.000 -0.036 0.041

Bootstrapped Mean 0.627 0.073 0.097 -0.086 0.088 0.051 0.004 0.000 0.064 -0.059 -0.041 -0.002 0.000 -0.035 0.041

RMSE 0.173 0.149 0.023 0.019 0.018 0.012 0.005 0.000 0.010 0.012 0.009 0.004 0.000 0.008 0.009

Minimum Information

Original Estimate 0.783 -0.105 0.111 -0.108 0.112 0.050 0.004 0.000 0.062 -0.060 -0.040 -0.002 0.000 -0.034 0.044

Bootstrapped Mean 1.045 -0.055 0.123 -0.123 0.123 0.048 0.003 0.000 0.044 -0.051 -0.048 -0.003 0.000 -0.044 0.051

RMSE 0.321 0.193 0.026 0.027 0.025 0.011 0.005 0.000 0.021 0.014 0.014 0.004 0.000 0.013 0.013

First 50 Observations

Maximum Likelihood

Original Estimate 0.557 0.122 0.074 -0.070 0.075 0.038 0.010 0.000 0.064 -0.053 -0.028 -0.008 0.000 -0.036 0.036

Bootstrapped Mean 0.557 0.123 0.074 -0.070 0.075 0.038 0.010 0.000 0.064 -0.053 -0.027 -0.008 0.000 -0.036 0.036

RMSE 0.225 0.203 0.030 0.026 0.025 0.018 0.007 0.000 0.014 0.015 0.014 0.005 0.000 0.011 0.012

Minimum Information

Original Estimate 0.639 0.112 0.080 -0.082 0.089 0.038 0.010 0.000 0.065 -0.057 -0.027 -0.008 0.000 -0.037 0.040

Bootstrapped Mean 0.900 0.090 0.095 -0.095 0.095 0.034 0.010 0.000 0.049 -0.049 -0.034 -0.010 0.000 -0.049 0.049

RMSE 0.350 0.245 0.032 0.032 0.029 0.017 0.006 0.000 0.020 0.015 0.018 0.006 0.000 0.018 0.016

First 25 Observations

Maximum Likelihood

Original Estimate 0.078 0.407 0.042 -0.053 0.066 0.087 0.009 0.000 0.091 -0.095 -0.073 -0.005 0.000 -0.050 0.073

Bootstrapped Mean 0.083 0.404 0.043 -0.053 0.066 0.087 0.009 0.000 0.091 -0.095 -0.073 -0.005 0.000 -0.050 0.073

RMSE 0.256 0.249 0.031 0.029 0.030 0.026 0.008 0.001 0.019 0.021 0.020 0.006 0.001 0.015 0.017

Minimum Information

Original Estimate 0.212 0.284 0.052 -0.067 0.078 0.083 0.008 0.000 0.086 -0.091 -0.073 -0.004 0.000 -0.045 0.073

Bootstrapped Mean 0.518 -0.472 0.074 -0.074 0.074 0.087 0.004 0.000 0.058 -0.082 -0.087 -0.004 0.000 -0.058 0.082

RMSE 0.411 0.332 0.039 0.033 0.033 0.023 0.008 0.001 0.033 0.021 0.027 0.007 0.001 0.021 0.021
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