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Abstract: The rise in popularity of dual models has raised several issues regarding curvature restrictions.

This paper proposes a test of curvature restrictions based on the eiginvalues of the Hessian matrix of the

dual form. The proposed test is then demonstrated by estimating a dual cost function for agricultural banks.
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1. Introduction

The 1970s spawned a revolution of sorts in empirical analysis of consumer demand relationships and

of factor demand and product supply relationships on the part of producers. Two signi�cant developments

that may be argued to have played a major role in this revolution were the popularization of what has come

to be termed modern microeconomic theory in graduate curricula and the development of exible functional

forms.

Modern microeconomic analysis �nds its roots in the writings of Debreu, Hotelling and Shephard, among

others, and has been popularized by such books as Cornes, Deaton and Muellbauer, Fuss and McFadden,

Varian and Chambers. Some of the most signi�cant features of modern microeconomic theory are its reliance

on convex analysis and indirect (dual) objective functions. This, in combination with well known envelope

theorems (e.g. Hotelling's and Shephard's lemmas) has led to increased theoretical rigor in the form of

mathematical regularity (integrability) conditions on empirical systems of demand (or supply) equations. It

should be noted that these developments are especially signi�cant as regards productions theory where for

years standard texts treated factor demand and production supply systems virtually as afterthoughts.

Flexible functional forms began their rise to prominence with the seminal articles by Christensen, Jor-

genson and Lau who introduced the Translog function and Diewert who developed the Generalized Leontief.

Since that time numerous additional exible functions have been developed including the Fourier (Gallant)

and various miniex forms (Barnett and Lee).

The principle attraction of exible functional forms rests on their ability to provide a local second order

approximation to an arbitrary (true) underlying function. On the surface, this class of functions o�ers the

panacea of avoiding, or at least lessening, concerns over functional speci�cation since they could be viewed

as an approximation to the \true" function. However, lost in many discussions and empirical applications

is the local nature of the approximation. This is a signi�cant limitation of such functions, an issue recently

addressed by Driscoll.

It should be noted that while the most commonly used exible functions (e.g. Trans-log, generalized

Leontief, normalized quadratic) are generally presented as second order Taylor series approximations, they

may also be considered as exact functional speci�cations. Under such circumstances, these functions are

still exible in the sense that they enable underlying consumer preferences or production structures to be

represented without a priori restriction. This, as pointed out by Fuss, McFadden and Mundlak, results

because the number of unrestricted parameters in commonly used exible functions coincides with the

number of distinct economic e�ects that characterize unrestricted technology or preference structures.

In combination, the use of indirect objective functions and exible functional forms have brought systems

estimation to the forefront of empirical investigations of demand and supply relationships. Commensurate

with this, the imposition of restrictions to ensure \theoretical consistency" have come to be considered stan-

dard empirical practice. Many of these theoretical properties such as homogeneity, symmetry, and even

homotheticity, may be imposed as uniform linear parameter restrictions in most commonly used speci�-

cations. The uniform linear nature of these restrictions provides straightforward global statistical tests of
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conformance of the empirical model and underlying data with these theoretical properties. Indeed, statistical

tests of homogeneity and symmetry have received considerable attention (Laitinen; Taylor, et al.; Raj and

Taylor).

Some theoretical restrictions, most notably those related to monotonicity and curvature (i.e. concavity

and convexity) are not generally testable via global linear parameter restrictions. Because of this, such

restrictions are generally \evaluated" in empirical analyses by checking the estimated demand equations for

monotonicity and the relevant Hessian matrix for sign (semi-) de�niteness at either the mean of the data or at

every sample point. While monotonicity is almost always satis�ed empirically, the satisfaction of curvature

restrictions has been varied; often satis�ed at the mean of the data, but seldom satis�ed at every sample

point.

The absence of a statistical test for curvature restrictions has placed empirical analysts in an unfor-

tunate quandary when simple \evaluations" uncover violations of this property. One can either reject the

validity of the model, ignore the violations or rationalize them away, or impose them globally via Cholesky

decomposition. Each of these alternatives has de�ciencies. Those related to the �rst alternative are obvious.

Simply ignoring curvature violations may lead to inferences that are inconsistent or misleading. Imposing

curvature restrictions may seem the best alternatives. However, as shown by Diewert and Wales, globally

imposing curvature restrictions on many exible functional forms has the e�ect of biasing the second order

parameter estimates toward zero, thereby eroding the exibility of such functions.

Given that curvature restrictions on most indirect objective functions derive from the assumption of

optimizing behavior as manifest in the implied convexity of input requirement or indi�erence sets, ad hoc

treatment of such properties is not appropriate. Indeed, in the \as if" world that most data aggregations

impose on empirical analysis, the ability to statistically evaluate curvature restrictions, and hence the basic

assumption of optimizing behavior upon which the very existence of the empirical model rests, is critical. As

such, this paper proposes a statistical framework for evaluating curvature restrictions in systems of demand

and supply equations.

This paper �rst examines the de�nition of concavity linking it with Hermitian matrices. The following

section then examines this linkage's implications for duality. Next the paper takes up the topic of estimation

and examines how the eigenvalues of a Hermitian matrix can be conditioned on the mean and variance of

the estimated parameters. Finally, the paper demonstrates the testing procedure using Featherstone and

Moss' data set.

2. Concavity, Hermitian Matrices and the Dual

In order to make our discussion more concrete we focus on the dual cost function. However, the proposed

mechanics are fairly general and apply to any indirect objective framework such as the pro�t function.

The cost function expresses cost as a function of input prices and output levels. Concavity in input prices

implies that while cost increases as input prices increase, these increases in cost are smaller for each additional

increase in price. From an economic perspective this change in the rate of change implies something about

the nature of the production process, the optimizing behavior of producers and substitutability between

factors of production.

Mathematically concavity is demonstrated by the Hessian matrix of the cost function. Given any

empirical cost speci�cation

C = G(x; p) (1)

where C is the cost of producing the output vector,x, at a given level of input prices, p. The cost function

is concave in prices if and only if

dp0r2

ppG(x; p) dp < 0 (2)

where dp is any vector of price changes, i.e., that the Hessian matrix be negative de�nite. The negative

de�niteness of the matrix can be demonstrated in several ways such as alternating signs of the principle

minors, but more direct to the purpose of this study is the use of eigenvalues.

By de�nition a real valued, symmetric matrix is Hermitian (Lancaster and Tismenetsky, p. 3). Hermi-

tian matrices are somewaht unique among matrices because all the eigenvalues of a real valued Hermitian

matrix are also real. Further, a Hermitian matrix is positive (negative) de�nite if all of its eigenvalues are

positive (negative) (Lancaster and Tismenetsky, p 179).
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Given that the hessian matrix of the cost function with respect to input prices is symmetric by Young's

theorem, the eigenvalues of the Hessian matrix can then be used as a test for concavity. Speci�cally, if all the

eigenvalues of the Hessian matrix with respect to input prices are negative then the cost function speci�cation

is concave in input prices. The problem with this de�nition is that the Hessian matrix will possess as many

eigenvalues as it does input prices. Therefore, an alternative measure of concavity is whether the maximum

eigenvalue is less than zero. Similarly, testing for convexity in output levels would involve testing whether

the minimum eigenvalues of the Hessian matrix with respect to output levels is less than zero.

3. Estimation and the Hermitian

Given the forgoing discussion it is useful to review the typical approach to estimating dual cost functions.

First a exible functional form is speci�ed and parameters estimated using maximumlikelihood or three stage

least squares. A common approach is to impose homogeneity and symmetry. The estimated values can then

be tested for concavity globally in the case of the quadratic function or at some number of points in the

case of more general functions. If the Hessian matrix is not negative de�nite at the estimated values then

concavity can be imposed by either estimating the Cholesky decomposition of the Hessian or restricting

the eigenvalues of the Hessian matrix to be negative. However, as a �rst step in this process we propose

testing the viability of concavity. If concavity is viable then the researcher can impose concavity reasonably

con�dent in the probability of success and the merits of the restriction. However, if the concavity scenario

is not viable then the researcher may want to re-examine his speci�cation.

To compare these scenarios, consider the estimation process. Assuming the parameters are estimated

using maximum likelihood, the parameter vector � is choosen to

min�
T
2
lnj
̂(�)j


̂(�) =
PT

t=1 �̂t(�)�̂t(�)
0

�̂t(�) =

�
Ct �G(xt; pt; �)

z�t �r�
pG(xt; pt; �)

� (3)

where 
̂(�) is the estimated variance matrix, �̂t(�) is the estimated residual vector for observation t, Ct is

the observed cost, G(xt; pt; �) is the cost function augmented to include the set of estimated parameters, z�t
denoted sthe n-1 input levels, and r�

pG(xt; pt; �) are the n-1 input demand equations. This minimization

problem is used to de�ne the parameter estimates and the asymptotic variance of the estimated parameters.

The asymptotic variance of the parameter vector could be used to construct several tests regarding the

estimated results. For example, if one were interested in testing an assumption regarding the marginal cost,

he could construct a sample of simulated marginal costs by drawing from the sample of �s implied by the

estimates. Such tests have been used to compute test statistics for homogeneity and symmetry in small

samples.

Extending this concept further, the Hessian matrix of the cost function with respect to input prices

can also be derived based on the estimated parameter vector. Thus, the analyst can simulate the Hessian

matrix with respect to input prices based on the parameter estimates and the asymptotic variance matrix.

Further, the maximum eigenvalue for each draw of the Hessian matrix can be used as a data point to

analyze the concavity. Speici�cally, for a �xed (xt; pt) a sample of Hessian matrices can be constructed and

their maximum eigenvalues computed. The sorted sample of maximum eigenvalues then indicates whether

concavity can be rejected. For example, if out of 1000 draws 100 eigenvalues are greater than zero the

researcher would fail to reject concavity. If, on the other hand 500 maximum eigenvalues were positive he

would conclude that the representation was negative semi-de�nite. However, if 900 eigenvalues out of 1000

were greater than zero the analyst would probably conclude that the sample was not consistent with concavity.

In the �rst two scenarios imposing concavity by estimating the Cholesky decomposition or constraining the

eigenvalues would appear a reasonable approach while in the third scenario we may interpret te results as

indicative of misspeci�cation.

4. An Empirical Example
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To demonstrate the use of the criteria we apply the technique to the problem analyzed by Featherstone

and Moss. Featherstone and Moss analyze the economies of scope and scale for agricultural banking using

a normalized quardatic cost function. The normalized quadratic simplies the discussion regarding the point

estimate of concavity since concavity is constant across the speci�cation. Also the data set legitimizes the

asymptotic variance matrix because the sample size is fairly large (7,108 banks).

The model estimated is the standard normalized quardratic

C = �0 + �w +
1

2
w0Aw + �y +

1

2
y0By + y�w (4)

where �0 is an estimated constant, � and � are estimated vectors, A, B, and � are estimated matrices, w is

a vector of observed input prices and y is a vector of observed outputs. Equation (4) was estimated using

concentrated maximum likelihood imposing symmetry and homogeneity.

One reason this data set was used is that Featherstone and Moss found that concavity in input prices

and convexity in output levels do not hold at the estimated values. They then �t the same cost function

using the Cholesky decomposition approach suggested by Lau. The question can then be raised regarding

the appropriateness of this assumption. Using the maximum likelihood estimates of the A and B matrix and

their asymptotic variance matrix, we simulated 1000 draws of the A and B matrix. The average eigenvalue

of A was 371.99 with a standard error of 54.85. Similarly, the minimum eigenvalue was -.0000536 with a

standard error of .00000476. Thus, if we are willing to accept the normality of the maximum and minimum

eigenvalues by the law of large numbers we reject the possibility that the minimum eigenvalues of the A

matrix is less than or equal to zero and that the minimum eigenvalue of the B matrix is greater than or

equal to zero. This in e�ect rejects the convexity of the cost function in input prices and the concavity of

the cost function in output levels. More telling than the assumption of normality, however, is the fact that

none of the maximum eigenvalues of the A matrix are negative and none of the minimum eigenvalues of the

B matrix are positive.

These results have numerous consequences for speci�cation. First, any attempt to impose concavity

by either methodology will probably prove di�cult. Speci�cally, convergence in the maximum likelihood

procedure will be slow and highly dependent on the initial values. More importantly, the original cost

function imposing concavity is probably misspeci�ed. For example, the vector of input prices may include

quasi-�xed inputs, or, as is more likely the case in the Featherstone and Moss study, the identi�cation of

inputs and outputs may be faulty. However, the rejection of concavity may be an indication of a more vexing

problem such as the choice of functional forms. For example, Featherstone and Moss choose the normalized

quadratic which imposes the same degree of concavity throughout the sample while in fact the concavity may

change as banks become larger or smaller. Finally, rejection of concavity may imply poor pooling decisions

in constructing the data set.

5. Conclusions

The importance of concavity/convexity conditions in the estimation of dual or indirect objective func-

tions cannot be minimized. If the estimated function violates the optimizing behavior on which it is predi-

cated, little faith can be placed in the economic interpretation of the estimated model. To this end several

authors have suggested procedures for imposing concavity on the model. This paper goes one step further

by asking whether the failure of concavity is an artifact of misspeci�cation and proposes an empirical test of

the reasonableness of concavity. Speci�cally, the eigenvalues of the Hessian matrix can be sampled to deter-

mine the likelihood of concavity. Failure to accept concavity not only provides evidence of misspeci�cation,

but also may save the researcher time and resources by ruling out computationally expensive estimation

procedures.
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