
DEFINING THE GENERAL TRANSFORMATION TO

NORMALITY: A PROPOSAL TO CORRELATE GENERAL

NONNORMAL DISTRIBUTIONS

CHARLES B. MOSS

Abstract. Non-normality may be important in several instances in agricul-
tural economics such as the valuation of crop insurance. This paper develops

an extension of the inverse hyperbolic sine transformation to normality for

modeling correlated non-normal variables. To demonstrate the overall tech-
nique, the paper estimates the non-normal transformation for crops in North

Florida.

1. Introduction

The concept of transforming a random variable into normality using a flexible
mapping function is not new to agricultural economics. Moss and Shonkwiler [2]
use an inverse hyperbolic sine transformation to model nonnormality in corn yields
using a stochastic trend model to model the changes in the mean of the yield dis-
tribution over time. More interestingly for our discussion here, Ramirez, Moss and
Boggess [3] use the same transformation to model correlation among potentially
nonnormal random variables. Both of these studies use a generalization of the in-
verse hyperbolic sine transformation introduced by Burbidge, Magee, and Robb
[1]. Burbidge, Magee and Robb propose using the inverse hyperbolic sine to reduce
the effect of outliers. This concept carries into the applications to model nonnor-
mality in that the inverse hyperbolic sine transformation only admits leptokurtotic
distributions (fat tails). In its original specification, the inverse hyperbolic sine
transformation corrected for kurtosis, but did not modify skewness. The modifica-
tion suggested by Moss and Shonkwiler introduced an additional parameter which
allowed the distribution to be either positively or negatively skewed.

While the inverse hyperbolic sine transformation has several valuable properties,
it is but one of an infinite class of valid transformation to normality. Specifically,
any monotonic transformation can be used to transform one distribution into an-
other distribution. This study examines a fairly general approach to define such a
transformation. We develop a methodology for defining transformations to normal-
ity for the ease of modeling the correlation between potentially nonnormal random
variables
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Figure 1. General Transformation between Gamma and Normality

2. A Heuristic Example

As a point of introduction, let us assume that we have two random variables with
vastly different distributions a Gamma distribution and a Beta distribution. In
addition, assume that we believe that the random variables are correlated and that
this correlation is important for economic reasons. Maybe the distributions repre-
sent crop returns that the farmer can use to diversify risk. The concept is to develop
a general approximation to each distribution based on a linear transformation to
normality.

As stated above, the inverse hyperbolic sine transformation is but one of an
infinite number of valid monotonic transformations. An exhaustive search is valid
transformations is impossible, so another approach is to transform the data into
a space to facilitate our search. I propose plotting the values of the transformed
variables that yield the same probability. For example, I assume that given x ∼
Γ [α, β] there exists a z ∼ N [0, 1] that yields the same probability. In our example,
I assume that x ∼ Γ [1.5, 1.0]. For any x drawn from this distribution I can define

(2.1) F ∗ =

∫ x

0

f (x|α, β) dx

where f (x|α, β) is the probability density function for the Gamma distribution.
Using this value it is possible to derive

(2.2) z = G−1 (F ∗) 3: G (z) =

∫ z

−∞
g
(
z|µ, σ2

)
dz

where g
(
z|µ, σ2

)
is the probability density function for the normal distribution

(initially we assume a standard normal distribution). Figure 1 presents the general
form of this transformation to the standard normal distribution.
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Actual Estimated

Figure 2. Comparison of Actual Mapping with the Estimated Mapping

The next step is to estimate a general monotonic mapping between the variables.
In this case, a variant of the natural logarithm would seem appropriate

(2.3) z = γ0 + γ1 ln (x)

Estimating this transformation with ordinary least squares yields γ̂0 = −0.0590
(0.0129) and γ̂1 = −0.9290 (0.0103) (where the numbers in parentheses denote
standard errors). This approximation is presented graphically in Figure 2. Figure
3 presents the true Gamma distribution and the approximation resulting from the
transformation. The approximation could be improved by incorporating higher
order log terms (i.e., quadratic or cubic terms) while maintaining the monotonicity
of the transformation over the relevant range.

3. Empirical Example

Table 1 presents the observed yields for Cotton, Soybeans, and Potatoes in North
Florida. Using this data, I computed the empirical cumulative density function
defined as

(3.1) F̃ (x1i) =
1

N

∑
x1j≤x1i

1.

Next, following Equation 2.3 I then compute the value of yield that would give the
same cumulative density function value. Unfortunately, none of the data yields a
marked depiction from normality. However, taking potatoes as an example, I apply
the logarithmic form depicted in Equation 2.3. The result is are the estimates
γ̂0 = −1, 289.1 (278.6739) and γ̂1 = 278.67.4 (5.1965). Figure 4 presents actual and
estimated values of ŷ (i.e., the transformed variable that is normally distributed).
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Table 1. Yields for North Florida

Original Data Detrended Yields
Year Cotton Soybeans Potatoes Cotton Soybeans Potatoes
1960 327 26 122 732.444 35.487 257.869
1965 353 26 148 720.903 34.609 271.288
1970 436 28 162 766.362 35.730 272.708
1975 346 24 194 638.821 30.852 292.127
1980 610 22 194 865.280 27.973 279.547
1985 693 26 226 910.739 31.095 298.967
1990 640 19 219 820.197 23.216 279.386
1995 472 26 210 614.656 29.338 257.806
2000 480 19 286 585.115 21.460 321.225
2005 762 32 273 829.574 33.581 295.645
2010 766 30 250 796.033 30.703 260.064
2014 914 43 240 914.000 43.000 240.000

Table 2. Transformed Distributions

Cumulative Cotton Soybeans Potatoes
Distribution X1 Z1 X2 Z2 X3 Z3

0.009 529.099 534.389 21.460 22.284 233.838 219.955
0.027 585.115 580.394 23.216 24.139 240.000 231.368
0.045 609.132 604.668 25.230 25.117 242.192 237.389
0.064 614.656 622.014 25.811 25.816 242.516 241.692
0.082 628.623 635.833 26.392 26.374 245.870 245.121
0.100 638.821 647.496 27.527 26.844 246.676 248.014
0.118 668.508 657.696 27.919 27.255 247.257 250.544
0.136 676.082 666.838 27.973 27.623 249.032 252.812
0.155 676.936 675.179 27.987 27.960 250.256 254.881
0.173 688.887 682.894 28.379 28.271 256.774 256.795
0.191 692.590 690.107 28.405 28.561 257.806 258.584
0.209 696.395 696.909 28.689 28.836 257.869 260.272
0.227 700.411 703.371 29.271 29.096 257.902 261.875
0.245 702.804 709.547 29.338 29.345 260.064 263.407
0.264 704.640 715.482 29.744 29.584 262.290 264.879
0.282 709.607 721.212 29.798 29.815 263.548 266.301
0.300 720.903 726.765 30.446 30.039 263.934 267.678
0.318 732.444 732.169 30.703 30.257 265.322 269.019
0.336 739.558 737.444 30.852 30.470 265.579 270.327
0.355 744.706 742.608 31.041 30.678 265.772 271.609
0.373 760.541 747.680 31.095 30.882 270.999 272.867
0.391 761.214 752.672 31.203 31.084 271.288 274.105
0.409 761.428 757.600 31.284 31.282 272.708 275.328
0.427 766.362 762.475 31.325 31.479 277.740 276.537
0.445 766.525 767.308 31.500 31.674 278.580 277.736

...
...

...
...

...
...

...
0.991 1072.247 1028.946 43.000 42.221 342.709 342.641
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Figure 3. Comparison of Actual and Approximated Gamma Distribution
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Figure 4. Estimated Transformed Potato Yields

These transformed variables can be used to compute the correlation between
cotton and potato yields depicted in Table 3. In this case, the transformation is
almost linear for the entire range of potato yields (i.e., potato yields are probably
normally distributed). Hence, the correlation coefficient for the transformed yields
and the untransformed yields are almost identical at -0.093.

Next, assume that I conclude that cotton and soybeans are normally distributed
while potatoes are non-normally distributed under the logarithmic transformation
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Table 3. Transformed Potato Yields Paired with Cotton Yields

Transformed
Year Cotton Potatoes Potatoes
1960 732.444 257.869 258.223
1965 720.903 271.288 272.360
1970 766.362 272.708 273.815
1975 638.821 292.127 292.984
1980 865.280 279.547 280.718
1985 910.739 298.967 299.434
1990 820.197 279.386 280.557
1995 614.656 257.806 258.155
2000 585.115 321.225 319.445
2005 829.574 295.645 296.320
2010 796.033 260.064 260.585
2014 914.000 240.000 238.211

in Equation 2.3. The parameters of transformation along with the variance covari-
ance matrix for yields can be estimated using maximum likelihood

(3.2)

z1i = x1i

z2i = x2i

z3i = γ0 + γ1 ln (x3i)

f
(
z, γ0, γ1, σ

2
)
∝ |Ω|−N/2∏N

i=1 exp
[
−1

2 (zi − µ)
′
Ω−1 (zi − µ)

]
γ1
x3i

where γ1/x3i is the Jacobian of the transformation. Following the general approach
from [3], I can maximize the natural logarithm of the likelihood function.

4. Discussion

This paper outlines a generalization of the approach used by Moss and Shon-
kwiler [2] to model correlated non-normal random variables such as yields. In this
paper, I consider a general mapping function with the only restriction that the
mapping be positively monotonic. To demonstrate the concept, I use cotton, soy-
bean and potato data for North Florida. Unfortunately, each of these distributions
appear to be normal.
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