Lecture XX: Other Methods of Investment Analysis

Charles B. Moss¹

¹Food and Resource Economics Department University of Florida


January 22, 2018

Charles B. Moss Other Investment Rules

イロト イヨト イヨト

DQ P

Payback Method Internal Rate of Return Benefit Cost Analysis

・ロト ・四ト ・ヨト ・ヨト

Э

SQA

Payback Methods

• The **payback method** asks the basic question: How quickly does the alternative pay back its original investment?

	Scen	ario 1	Scen	Scenario 2		
	Annual	Accumulated	Annual	Accumulated		
Year	Flow	Net Flow	Flow	Net Flow		
0	-240,854.40	-240,854.40	-188,354.40	-188,354.40		
1	69,450.83	-171,403.57	55,172.99	-133,181.41		
2	70,145.34	-101,258.23	55,724.72	-77,456.69		
3	70,846.79	-30,411.44	56,281.96	-21,174.73		
4	71,555.27	41,143.83	56,844.78	35,670.05		
5	72,270.81	113,414.64	57,413.23	93,083.28		
6	72,993.52	186,408.16	57,987.36	151,070.64		
7	73,723.46	260,131.62	58,567.24	209,637.88		
8	74,460.69	334,592.31	59,152.91	268,790.79		

イロト イポト イヨト イヨト

• The exact payback period for Secnario 1 is computed as

$$PB = 3 + \left(\frac{-30,411.44 - 0}{-30,411.44 - 41.143.83}\right) \times (4 - 3) = 3.425$$
(1)

of course this degree of precision is somewhat dubious.

- The same estimate for Scenario 2 is 3.373. So both of these investments have nearly identical payback periods.
- Under the payback method, investments with shorter payback periods are preferred to investments with longer payback periods.
- One way to interpret this rule is as extreme risk aversion.

< ロ > < 同 > < 回 > < 回 >

Internal Rate of Return

- The **internal rate of return** is a specialized reformulation of net present value.
- Starting with the simple present value problem

$$NPV = -2,000 + \frac{1,150}{(1.08)} + \frac{1,250}{(1.08)^2} = 126.38.$$
 (2)

- Given what we know about net present, value an increase in the discount rate would result in a lower net present value.
- Increasing the discount rate to 9 percent would reduce the net present value to \$ 98.30.
- Intuitively, there exists a discount rate for which the net present value is equal to zero (in this case 13 percent).

< ロ > < 同 > < 回 > < 回 > < 回 > <

Computation of the Internal Rate of Return

 \bullet We start by replacing $1/\left(1+r\right)$ in Equation $\,2$ with δ and reorder the expression to yield

$$NPV = 1,250\delta^2 + 1,150\delta - 2,000 = 0$$
 (3)

so that we can solve for the internal rate of return applying the quadratic formula to Equation 3 yielding

$$\delta = \frac{-1,150 \pm \sqrt{1,150^2 - 4(1,250)(-2,000)}}{2(1,250)} = \{0.8859, -1.8060\}$$
(4)

イロト イポト イヨト イヨト

The internal rate of return problem in this case (two period) has two solutions.

• To determine the internal rate of return

$$\delta = \frac{1}{(1+r)} \Rightarrow r = \frac{1}{\delta} - 1.$$
(5)

<ロト < 同ト < ヨト < ヨト

In this case $\delta = 0.8859 \Rightarrow r = 0.1288$ while for $\delta = -1.8060 \Rightarrow -1.5537$.

• One might say: Obviously the first outcome is the investment's internal rate of returninternal rate of return. However, the question remains why?

- Consider a somewhat more complicated cash flow stream investment I in the preceeding lecture.
- We would determine the internal rate of return by solving

$$NPV = 3,120\delta^4 + 3,210\delta^3 + 3,290\delta^2 + 3,380\delta - 10,500 = 0.$$
(6)

This equation has four solutions (by the fundamental theorem of polynomials), but unlike the quadratic its solutions do not have a closed form.

< ロ > < 同 > < 回 > < 回 >

 $\bullet\,$ The numerical results for δ in Equation $\,$ 6 are

$$\delta = \begin{cases} -1.6056\\ -0.1693 - 1.5039i\\ -0.1693 + 1.5039i\\ 0.9153 \end{cases}$$
(7)

・ロト ・ 一下・ ・ ヨト・

Э

DQ P

Clearly, in this example, the feasible delta is 0.9153 implying an internal rate of return of 0.0926.

Payback Method Internal Rate of Return Benefit Cost Analysis

Internal Rates of Returns for Sample Investments

Investment	IRR	ANPV	
I	0.0926	88.09	
J	0.0865	60.01	
K	0.1015	242.63	
K	0.0898	122.51	

Charles B. Moss Other Investment Rules

・ロト ・四ト ・ヨト ・ヨト

Э

SQA

Benefit Cost Analysis

- Another method for analyzing investment popular in policy and development analysis is the benefit cost approach.
- The **benefit cost** approach essentially divides present value of the revenue stream (or benefits) by the present of required capital outlays (or costs).

$$B/C = \frac{\sum_{i=0}^{N} \frac{B_i}{(1+r)^i}}{\sum_{i=0}^{N} \frac{C_i}{(1+r)^i}}.$$
(8)

 If the benefit to cost ratio is greater than one, the investment is determined to be "profitable" or "beneficial" to the economy. Payback Method Internal Rate of Return Benefit Cost Analysis

Present Value Benefit/Cost Analysis

	Investment J		Investment J*		Investm	Investment J**	
Year	Cost	Benefit	Cost	Benefit	Cost	Benefit	
0	15,000	0	15,000	0	15,000	0	
1	0	3,890	0	3,890	0	3,890	
2	0	3,610	0	3,610	0	3,610	
3	0	3,350	5,000	3,350	250	3,350	
4	0	3,100	0	8,500	0	3,233	
5	0	2,880	0	2,880	0	2,880	
6	0	2,670	0	2,670	0	2,670	
PV	15,000	15,277	18,969	19,247	15,198	15,375	
B/C	1.018	13,211	1.015	19,247	1.1012	13,373	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Э

990