
Lecture XVIII: Net Present Value and Multiple Projects

Charles B. Moss¹

¹Food and Resource Economics Department University of Florida

January 19, 2018

イロト イヨト イヨト イ

<ロト <回ト < 回ト < 回ト -

3

Net Present Value - The Basic Mechanics

 Moving away from the stylized model of present value, we begin by defining the **net present value** of an investment opportunity as

$$NPV = -I + \sum_{i=1}^{N} \frac{NCF_i}{(1+r)^i}$$
(1)

イロト イポト イヨト イヨト

- *NPV* is the net present value of the investment opportunity (the wealth created by the investment),
- I as the cost of the investment item,
- *NCF_i* as the net cash flow created by the investment in period *i*, and
- r as the weighted average cost of capitalweighted average cost of capital.

 As I = 0, N → ∞ and the cash flows are constant (i.e., NCF_i = NCF), the Net Present Value of the investment becomes

$$NPV = \frac{NCF}{r}.$$
 (2)

イロト イポト イヨト イヨト

• If an investment yields a constant return at the end of each period for N periods, the present value becomes

$$NPV = NCF \left\{ \frac{1 - \left(\frac{1}{1+r}\right)^{N}}{r} \right\}$$
(3)

• Formally, the expression in brackets is referred to as the present value of an ordinary annuity factor of N payments at an interest rate of r (PVAF_{N,r})

$$PVAF_{N,r} = \frac{1 - \left(\frac{1}{1+r}\right)^N}{r}.$$
(4)

イロト イボト イヨト イヨト

Э

DQ P

Net Present Value under Varying Discount Rates

	Net Cash	Discount Rate				
Year	Flow	0.05	0.06	0.07	0.08	0.09
0	-15,000	-15,000.00	-15,000.00	-15,000.00	-15,000.00	-15,000.00
1	3,250	3,095.24	3,066.04	3,037.38	3,009.26	2,981.65
2	3,250	2,947.85	2,892.49	2,838.68	2,786.35	2,735.46
3	3,250	2,807.47	2,728.76	2,652.97	2,579.95	2,509.60
4	3,250	2,673.78	2,574.30	2,479.41	2,388.85	2,302.38
5	3,250	2,546.46	2,428.59	2,317.21	2,211.90	2,112.28
6	3,250	2,425.20	2,291.12	2,165.61	2,048.05	1,937.87
Total		1,496.00	981.30	491.26	24.36	-420.76

Charles B. Moss Multiple Projects

・ロト ・回ト ・ヨト ・ヨト

990

Э

• The computation for the cash flow in Year 1 is

$$\frac{3,250}{(1+0.05)} = 3,095.24\tag{5}$$

• The computation for the cash flow in Year 2 is

$$\frac{3,250}{\left(1+0.05\right)^2} = 2,947.85\tag{6}$$

<ロト < 同ト < ヨト < ヨト -

1

• Note that the results indicate that for discount rates less than 8 percent, the net present value is positive.

• We can approximate the discount rate required to make the net present value equal to zero as

$$r^* = \left(\frac{0 - 24.36}{-420.75 - 24.36}\right) \times (0.09 - 0.08) + 0.08 = 0.080547$$
(7)

(or by linearly interpolating between the net present value at 0.09 and 0.08).

- The net present value at 0.080547 is -0.54.
- Here 0.080547 is a good approximation of the internal rate of return which will be more fully developed in a subsequent Lecture.

イロト イポト イヨト イヨト

Note that the annual cash flows in this example are constant
 we can rewrite the present value problem as

$$NPF = -15,0000 + \sum_{i=1}^{6} \frac{3,250}{(1+r)^i}$$

$$= -15,000 + 3,250 \sum_{i=1}^{6} \frac{1}{(1+r)^{i}}$$
(8)

ヘロト ヘロト ヘビト ヘビト

Э

SQA

 $= -15,000 + 3,250 \times PVAF_{6,r}.$

• Using the $PVAF_{N,r}$ from Equation 4 we see that for N=6 and r=0.06

$$PVAF_{6,0.06} = \frac{1 - \left(\frac{1}{1 + 0.06}\right)^{-6}}{0.06} = 4.9173$$
(9)

so the net present value of the investment in Table 1 at a discount rate of 0.06 becomes

$$NPV = -15,000 + 3,250 \times 4.9173$$

= -15,000 + 15,981.30 = 981,30 (10)

イロト イポト イヨト イヨト

Э

which conforms to the results given in the table.

Making Comparisons with Net Present Value – Equal Lives

Year	А	NPV_A	В	NPV_B	С	NPVC
0	-15,000	-15,000.00	-15000	-15,000.00	-15000	-15,000.00
1	3,250	3,037.38	3890	3,635.51	2670	2,495.33
2	3,250	2,838.68	3610	3,153.11	2880	2,515.50
3	3,250	2,652.97	3350	2,734.60	3100	2,530.52
4	3,250	2,479.41	3100	2,364.98	3350	2,555.70
5	3,250	2,317.21	2880	2,053.40	3610	2,573.88
6	3,250	2,165.61	2670	1,779.13	3890	2,592.07
Total		491.26		720.73		263.00

・ロト ・四ト ・ヨト ・ヨト

Э

SQA

- To motivate the next section a little, consider how we could construct a sequence of returns that (1) are constant and (2) will generate the same Present Value as the annual returns for the decreasing flow investment in Table 2.
- As a starting point

$$NPV = -15,000 + \frac{3,890}{1.07^{1}} + \frac{3610}{1.07^{2}} + \frac{3350}{1.07^{3}} + \frac{3100}{1.07^{4}} + \frac{2880}{1.07^{5}} + \frac{2670}{1.07^{6}}$$
$$= -15,000 + K \left(\frac{1}{1.07} + \frac{1}{1.07^{2}} + \frac{1}{1.07^{3}} + \frac{1}{1.07^{4}} + \frac{1}{1.07^{5}} + \frac{1}{1.07^{6}}\right)$$
(11)

• The basic question is what is K? We can derive K using the $PVAF_{0.07,6}$ – specifically, let us start with the present value of the decreasing series

$$\frac{3,890}{1.07^{1}} + \frac{3610}{1.07^{2}} + \frac{3350}{1.07^{3}} + \frac{3100}{1.07^{4}} + \frac{2880}{1.07^{5}} + \frac{2670}{1.07^{6}} = 15,720.73$$
(12)

• Therefore

$$K = \frac{15,720.73}{PVAF_{0.07,6}} = \frac{15,720.73}{\frac{1-1.07^{-6}}{0.07}}$$

$$= \frac{15,720.73}{4.7665} = 3298.14$$
(13)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1

	Dec	creasing	Con	Constant		
Year	Cas	Cash Flow		Flow		
1	3,890	3,635.51	3,298.14	3,082.38		
2	3,610	3,153.11	3,298.14	2,880.73		
3	3,350	2,734.60	3,298.14	2,692.27		
4	3,100	2,364.98	3,298.14	2,516.14		
5	2,880	2,053.40	3,298.14	2,351.53		
6	2,670	1,779.13	3,298.14	2,197.69		
Sum		15,720.73		15,720.73		

• Expanding the question a little further – we could ask what annual flow would return the same present value as the original investments?

$$NPV = -15,000 + \frac{3,890}{1.07} + \frac{3610}{1.07^2} + \frac{3350}{1.07^3} + \frac{3100}{1.07^4} + \frac{2880}{1.07^5} + \frac{2670}{1.07^6}$$
$$= k \left(\frac{1}{1.07} + \frac{1}{1.07^2} + \frac{1}{1.07^3} + \frac{1}{1.07^4} + \frac{1}{1.07^5} + \frac{1}{1.07^6} \right)$$
$$= 720.73 \Rightarrow k = \frac{720.73}{PVAF_{0.07,6}} = \frac{720.73}{4.7665} = 151.21$$
(14)

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Э

DQ P

	With Initial Investment				Consta	ant W/O	
	Decre	easing	Con	Constant		Initial	
Year	Cash	Cash Flow		Cash Flow		Investment	
0	-15,000.00	-15,000.00	-15,000.00	-15,000.00			
1	3,890.00	3,635.51	3,298.14	3,082.38	151.21	141.32	
2	3,610.00	3,153.11	3,298.14	2,880.73	151.21	132.07	
3	3,350.00	2,734.60	3,298.14	2,692.27	151.21	123.43	
4	3,100.00	2,364.98	3,298.14	2,516.14	151.21	115.36	
5	2,880.00	2,053.40	3,298.14	2,351.53	151.21	107.81	
6	2,670.00	1,779.13	3,298.14	2,197.69	151.21	100.76	
		720.73		720.73		720.73	

• So the annualized profit from this investment is \$ 151.21.

3

Multiple Projects

- Much of present value analysis is formulated in a binary decision framework (i.e., to accept the investment or not).
- As a starting point to our discussion, consider the cash inflows for five investment alternatives in Table 5, each of which requires an initial investment of \$20,000.
- Table 5 indicates that investments E, F, and G are acceptable at a discount rate of 8 percent.

(日)

Cash Flows for Multiple Projects

Year	D	E	F	G	Н
1	2,860	4,990	3,860	2,970	2,410
2	2,950	4,430	3,690	3,040	2,580
3	3,040	3,940	3,530	3,110	2,770
4	3,140	3,490	3,380	3,170	2,980
5	3,240	3,100	3,230	3,240	3,200
6	3,340	2,750	3,090	3,320	3,430
7	3,450	2,440	2,950	3,390	3,680
8	3,560	2,170	2,820	3,460	3,950
9	3,670	1,930	2,700	3,540	4,240
NPV at $r = 0.08$	-19.29	1,515.69	765.32	70.67	-425.57

Charles B. Moss **Multiple Projects**

<ロト < 部ト < 注ト < 注ト</p>

E

Investment Ranking - Equal Lives

Amount		
of Capital	Investment	NPV
20,000	E	1,515.69
40,000	E and F	2281.01
60,000	E and F and G	2351.68

• Our ability to rank the investment alternatives in Table 5 using net present value is dependent on the fact that all the investment alternatives have the same **planning horizon**.

イロト イポト イヨト イヨト

Investment Returns for Investments of Unequal Lives

	J	K	L
-10,500	-15,000	-20,000	-20,000
3,380	3,890	4,990	3,860
3,290	3,610	4,430	3,690
3,210	3,350	3,940	3,530
3,120	3,100	3,490	3,380
	2,880	3,100	3,230
	2,670	2,750	3,090
		2,440	2,950
		2,170	2,820
		1,930	2,700
291.77	277.41	1,515.69	765.32
3.3121	4.6229	6.2469	6.2469
88.09	60.01	242.63	122.51
	3,380 3,290 3,210 3,120 291.77 3.3121	3,380 3,890 3,290 3,610 3,210 3,350 3,120 3,100 2,880 2,670 291.77 277.41 3.3121 4.6229	-10,500 -15,000 -20,000 3,380 3,890 4,990 3,290 3,610 4,430 3,210 3,350 3,940 3,120 3,100 3,490 2,880 3,100 2,670 2,670 2,750 2,440 2,170 1,930 291.77 277.41 1,515.69 3.3121 4.6229 6.2469

Charles B. Moss Multiple Projects

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Investment Ranking - Unequal Lives

Amount		
of Capital	Investment	NPV
10,500		88.09
20,000	K	242.63
30,500	I and K	330.72
40,000	K and L	365.14
50,500	I and K and L	453.23
65,500	I and J and K and L	513.24

Charles B. Moss Multiple Projects

< ロ ト < 部 ト < 注 ト < 注 ト < </p>

E